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Preclinical models have been the workhorse of cancer research,
producing massive amounts of drug response data. Unfortunately,
translating response biomarkers derived from these datasets to
human tumors has proven to be particularly challenging. To
address this challenge, we developed TRANSACT, a computational
framework that builds a consensus space to capture biological pro-
cesses common to preclinical models and human tumors and
exploits this space to construct drug response predictors that
robustly transfer from preclinical models to human tumors. TRANS-
ACT performs favorably compared to four competing approaches,
including two deep learning approaches, on a set of 23 drug predic-
tion challenges on The Cancer Genome Atlas and 226 metastatic
tumors from the Hartwig Medical Foundation. We demonstrate
that response predictions deliver a robust performance for a num-
ber of therapies of high clinical importance: platinum-based chemo-
therapies, gemcitabine, and paclitaxel. In contrast to other
approaches, we demonstrate the interpretability of the TRANSACT
predictors by correctly identifying known biomarkers of targeted
therapies, and we propose potential mechanisms that mediate the
resistance to two chemotherapeutic agents.

model systems j translational medicine j clinical drug response j cancer j
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The accumulation of somatic alterations on the genome and
epigenome transforms healthy cells into malignant tumor

cells. Although these alterations are required for tumor growth,
they also confer vulnerabilities on tumor cells. Some well-known
examples of such genetic vulnerabilities are the amplification of
ERBB2 in breast cancer (1), the BRAFV600E mutation in skin
melanoma (2), or the BCR/ABL fusion in leukemia (3). These
vulnerabilities have been successfully exploited clinically by
directing drugs against them. However, for the vast majority of
cancer patients, no clear biomarkers exist. Hence, expanding our
arsenal of accurate biomarkers would pave the way for personal-
ized medicine by identifying the most effective drug for each
patient (4).

In order to discover such biomarkers, preclinical models
have been used extensively in the past decades, either in the
form of cell lines, patient-derived xenografts (PDX), or organo-
ids. This was partially fueled by the relative ease with which
these model systems can be subjected to drug screening. This
has led to breakthrough discoveries with broad clinical impact
(5). However, Paul Valery’s statement, “what is simple is always
wrong; what is not, is unusable” (6), also applies to these model
systems. Specifically, their simplicity also confers weaknesses:
the lack of a microenvironment in cell lines and the absence of
an immune system in cell lines, PDXs, and organoids. These
shortcomings are further amplified by culture artifacts (7, 8)

that lead to a reduced clinical significance of these models
(9, 10) and a high attrition rate in drug development (11).

Computational approaches that correct for these differences
are therefore needed to improve the identification of truly predic-
tive biomarkers (12). In the particular case of cancer, approaches
that identify biomarkers are divided into two distinct categories.
In the first category, mechanistic models are developed on pre-
clinical models and subsequently “humanized” to focus on the
similarities between preclinical models and human tumors (13).
The second category approaches the problem in a statistical fashion.
Using molecular profiles and drug screens from large-scale panels
of preclinical models (14, 15), cell line drug response predictors are
inferred (16–18). The resulting models are then applied to predict
the sensitivity of patients to certain drugs (19–21). Although already
promising, these approaches either do not take into account the fun-
damental differences between preclinical models and human
tumors (22) or only model these differences as a technical batch
effect (19–21). Recently, transfer learning and multitask learning
approaches have been developed to explicitly take these differences
into account, either partially using tumor responses during training
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(23, 24) or solely based on preclinical labels (25) while employing
linear approaches to correct for differences between preclinical
models and human tumors.

We present TRANSACT (Tumor Response Assessment by
Nonlinear Subspace Alignment of Cell lines and Tumors), a
versatile framework for subspace-based transfer learning
(26–30) that enables the transfer of drug response predictors
trained on a source domain (e.g., cell lines and PDXs) to a tar-
get domain (e.g., human tumors). TRANSACT employs the
powerful and robust mathematical framework of kernel meth-
ods (31–36) to capture both linear and nonlinear molecular
processes expressed in both the source and target domains. In
doing so, we obviate the need for cell line preselection (37–39)
and limit the loss of statistical power. While TRANSACT can-
not compensate for inherent deficiencies in model systems, it
identifies and exploits the space where model systems do repre-
sent human tumors accurately. First, we demonstrate that, com-
pared to existing methods (20, 21, 25), modeling nonlinearities
using TRANSACT improves drug response prediction in PDXs
after training on cell line responses only. We fix the hyperpara-
meter controlling the degree of nonlinearity on the PDX data
and then employ TRANSACT to transfer predictors of drug
response trained on cell lines to two human tumor datasets: pri-
mary tumors from The Cancer Genome Atlas (TCGA) and
metastatic lesions from the Hartwig Medical Foundation
(HMF). Specifically, the median performance of TRANSACT
exceeds that of competing approaches in seven of 13 challenges
on TCGA and the HMF sets. Importantly, this performance
improvement is attained without any training on data from the
human tumors. We finally employ the interpretability of our
approach to identify genes and pathways associated with drug
response. We provide a thorough mathematical derivation of
our algorithm in which we propose a principled way to compare
kernel principal components based on loadings by extending
the framework of principal vectors (PVs) to the nonlinear ker-
nel principal component analysis (PCA) setting. We generated
a completely reproducible pipeline and a fully open-source
software package.

Results
TRANSACT: Generating Nonlinear Manifold Representations to Transfer
Predictors of Response from Preclinical Models to Tumors. TRANS-
ACT compares genomic signals contained in the source (e.g.,
preclinical models) and target (e.g., human tumors) datasets and
outputs a consensus space—a representation of processes that are
present in both datasets. The nature of this representation depends
on the similarity function, K, that characterizes the relationships
between samples (Methods). Depending on the similarity function
employed, various types of nonlinear relationships can be repre-
sented in the consensus space. For instance, in the case of a Gauss-
ian similarity function, these nonlinearities include constant, linear,
second, and higher-order interaction terms (Methods).

In a first step, TRANSACTcomputes processes active in pre-
clinical models and human tumors, referred to as nonlinear
principal components (NLPCs) (Fig. 1A and SI Appendix, Fig.
1 A and B). These NLPCs correspond to nonlinear combina-
tions of gene activities that capture the variation in source and
target sets (SI Appendix, Fig. 2A). However, these two sets of
processes typically display limited similarity, simply because
preclinical models are not perfect models of human tumors (SI
Appendix, Fig. 1C). In order to capture the biological signal
common to both preclinical models and tumors, we align the
two sets of NLPCs using the notion of PVs (Fig. 1B). These
PVs are pairs of nonlinear processes—one preclinical and one
tumor process—ranked by decreasing similarity (Fig. 1B). The
top PVs correspond to highly similar processes, while bottom
PVs are essentially different processes. We first filter out PVs

with low similarity (below 0.5) in order to discard information
specific to either preclinical models or tumors (Fig. 1C). Since
the remaining PVs represent pairs of highly correlated pro-
cesses, we perform, within each PV pair, an interpolation
between the preclinical and the tumor processes (Fig. 1C). We
then select one intermediate vector that best balances the con-
tribution of each dataset (Fig. 1C and SI Appendix, Fig. 1E).
These intermediate processes are called consensus features and
correspond to biological processes that are 1) important in
both preclinical and tumor signals and 2) geometrically filtered
to ensure that the signal is not specific to either one of the data-
sets. We then project preclinical and tumor samples on the con-
sensus features (Fig. 1D, SI Appendix, Fig. 1F, and Methods).
Finally, we use the projected scores as input in a predictive
model of drug response trained using preclinical response data
(SI Appendix, Fig. 1G).

We theoretically show that, in the case of a linear similarity
function, TRANSACT reduces to PRECISE (25) (SI Appendix,
Equivalence with Geodesic Flow Kernel) and is fundamentally
different from approaches such as canonical correlation analysis
(CCA) (40) (SI Appendix, Difference with CCA on the Genes).

Nonlinearities Improve Response Prediction of Predictors Transferred
from Cell Lines to PDXs. When it comes to predicting drug
response in one model system, it is known that inducing nonli-
nearities can lead to improved performance (36), although lin-
ear methods remain competitive (18, 41). We investigated
whether the introduction of nonlinearities in the computation
of sample similarities resulted in improved response prediction
of predictors trained on cell lines (source domain) and trans-
ferred to PDXs (target domain). Since gene expression is
known to have predictive power comparable to other omics
datasets combined (16, 18, 42, 43), we restricted our analysis to
the expression of 1,780 genes known to be related to cancer
(44). Using TRANSACT, we computed consensus features for
cell lines (1,049 cell lines from 26 different tissues) and all
PDXs (399 samples from 5+ different tissues) (Methods). We
projected the gene expression data of all cell lines and all
PDXs onto these consensus features. We employed ElasticNet
to train models of drug response. We employed the projected
cell line expression data as input and the drug response, quanti-
fied as the area under the drug response curve (AUC), as target
output (see Methods). We applied this trained predictor on the
projected PDX expression data and compared the predicted
response to the measured best average response by Spearman
correlation (Fig. 2A). We made use of the standard Gaussian
similarity function (Methods) to vary the level of nonlinearity
introduced. This similarity function is characterized by a single
scaling factor γ, whose size is directly proportional to the pro-
portion of nonlinearity introduced (Fig. 2B). We studied the
predictive performance in PDXs for seven different values of γ,
ranging from a set of consensus features with an almost purely
linear (γ ¼ 1 × 10�5) to an almost purely nonlinear composi-
tion (γ ¼ 1 × 10�2). We compared the performance of TRANS-
ACT to three approaches that do not perform domain adapta-
tion: ElasticNet (22), a deep learning regression model
(Methods) referred to as deep learning (DL), and a kernel ridge
regression model (KRR) with the same nonlinear kernel set-
tings as TRANSACT. We further compared it to two state-of-
the-art domain adaptation approaches: ComBat batch correc-
tion followed by a deep learning regression (ComBatþDL) (21)
and PRECISE (25), a linear domain adaptation approach. All
models were trained to predict response to four different drugs
(Erlotinib, Cetuximab, Gemcitabine, and Afatinib) for which
we had response data available for both PDX models and cell
lines (Fig. 2 C–F). For ComBatþDL and DL, we report the
median performance obtained over 50 independent random ini-
tializations (Methods). Three other drugs were also studied:
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Paclitaxel, Ruxolitinib, and Trametinib (Dataset S1); however,
these show no significant association between predicted and
actual response in PDXs for any of the tested methods.

The studied methods can be divided along two axes: linear
versus nonlinear and domain adapted versus nonadapted (Fig.
2G), and we evaluated the performances along these axes for
the four drugs. For KRR and TRANSACT, we performed the
comparisons for the values of gamma that gave the best perfor-
mance. We observe that nonlinear methods (KRR and TRANS-
ACT) prevail over linear approaches (ElasticNet and PRECISE)
for three of the four drugs in each separate comparison (Fig.
2G). Furthermore, domain-adapted approaches (PRECISE and
TRANSACT) prevail over nondomain-adapted approaches

(ElasticNet and KRR) for three of the four drugs in each com-
parison (Fig. 2G).

When considering DL-based approaches, we observe, in gen-
eral, a clear improvement for approaches that employ domain
adaptation (PRECISE and TRANSACT) over those that either
do not (DL) or use a naıve correction (ComBatþDL), confirming
our earlier observation, namely the necessity to correct the input
signal when moving from the source to the target domain. More-
over, this also suggests that the correction required to transfer
from cell lines to PDXs is more complicated than correcting for a
technical batch effect as performed by ComBat. When comparing
TRANSACT to DL, a nonlinear and nonadapted method, we
observe better performance for TRANSACT for all four drugs.

Fig. 1. TRANSACT generates a nonlinear representation to transfer predictors of drug response from preclinical models to tumors. (A) In the first step,
we use a nonlinear dimensionality reduction method to find biological processes active in preclinical models and in tumors. This step is performed inde-
pendently in preclinical models and tumors and gives two sets of nonlinear processes called NLPCs. Here, we consider eight genes and three NLPCs for
both preclinical models and tumors. A colored circle means that the corresponding gene contributes to the NLPC, while a gray circle is a gene that does
not contribute. A colored connection is the interaction, or product, of two genes that contribute to the NLPC. For instance, the red preclinical NLPC repre-
sents the expression of Genes 5 and 7 and the product of the expression of Genes 5 and 7. (B) These two sets of processes are compared and ranked by
similarity. For that purpose, we compute PVs, which are pairs of processes, one from preclinical, one from tumor, ordered by decreasing similarity. Here,
the first PV is conserved between preclinical models and tumors, the second shows a 50% similarity, while the last PV corresponds to two distinct pro-
cesses. (C) We first discard the PVs with low similarity, for example, PV 3. We then aggregate each PV pair into one consensus feature (CF) by finding an
intermediate feature that balances the effect of the preclinical and tumor dataset. (D) Preclinical and tumor data are finally projected on each consensus
feature, yielding a sample-by-CFs matrix. These CF scores represent the activity of biological processes essentially important for both preclinical models
and tumors. These scores can then be used in any machine learning model to predict drug response.
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We note that for KRR, additional nonlinearity tends to
reduce performance. In contrast, the introduction of additional
nonlinearity in TRANSACT increases performance. Specifically,
we observe for several drugs that the predictive performance
increases with the scaling factor until a maximal performance is
reached (γ ¼ 10�4 for Erlotinib, Cetuximab, and Afatinib and
γ ¼ 10�3 for Gemcitabine), after which the predictive perfor-
mance drops. As we only have three drugs in common between
the PDX and human cohorts, we decided to fix the scaling fac-
tor to the average of these two values (γ� ¼ 5 × 10�4) and
employ the associated consensus space to transfer the predic-
tors of response to the tumor samples (Dataset S1). For the
drugs in common, we applied the predictors with drug-specific
values of γ optimized on the PDX models to the TCGA and
HMF cohorts (Dataset S2). We only did so for the drugs in
which the drug-specific value of γ differed from γ�, that is, not
for Afatinib. For Gemcitabine, we observe a small increase in
performance (0.01 in AUC) for TCGA and no difference for
HMF, while for Cetuximab, the prediction result still failed to
reach significance. As a further check of the selected value of

γ�, we analyzed the properties of the consensus space obtained
using γ�. We observe a concentration of the offset contribution
in the top consensus features and an increasing proportion of
nonlinear terms contribution to lower order features (SI
Appendix, Fig. 7C). The UMAP (45) projection of the consen-
sus features shows a clear coclustering of cell lines and PDXs
of the same tissue (SI Appendix, Fig. 7D).

Consensus Features between Cell Lines (GDSC) and Human Tumors
Conserve Primary Tumor Information. With the scaling factor (γ)
calibrated on PDX models, we moved to the clinical setting to
investigate domain adaptation between cell lines and two differ-
ent human tumor datasets: primary tumors from TCGA and met-
astatic lesions from the HMF. We selected 30 consensus features
in the genomics of drug sensitivity in cancer (GDSC)–TCGA
analysis (SI Appendix, Fig. 9) and 20 in the GDSC–HMFanalysis
(SI Appendix, Fig. 10). We arrived at these numbers by first select-
ing NLPCs based on the inflection point of the cumulative eigen-
values and subsequently only retaining PVs with a similarity above
0.5. We observe that the consensus features computed between

Fig. 2. Impact of modeling nonlinearities
for drug response prediction transfer from
cell lines to PDXs. (A) Main workflow of the
prediction on PDXs. Using cell lines and
PDX gene expression, we compute consen-
sus features and project each dataset onto
these. We then train a predictor of drug
response (ElasticNet regression) on the pro-
jected scores of cell lines and the cell line
response, measured as the AUC. Finally, we
use this regression model to predict drug
response on PDXs and correlate the pre-
dicted AUC to the known best average
response. (B) Proportion of nonlinearities
induced by the Gaussian similarity function
as a function of the scaling factor γ. For dif-
ferent values of γ, we compute the average
contribution over all consensus features of
offset, linear, interaction, and higher-order
features (Methods). Offset is here to be
understood as the exponential of the
squared depth and does not correspond to a
constant term. We finally evaluate the
response prediction on PDX models for dif-
ferent values of γ and for five competing
approaches: ElasticNet, DL, ComBatþDL, PRE-
CISE, and a KRR with same nonlinearities as
TRANSACT. We report results for Erlotinib
(C), Gemcitabine (D), Afatinib (E), and Cetuxi-
mab (F), which show the Spearman correla-
tion between predicted AUC and best
average response on the PDX models. (G)
Diagram summarizing the effect of nonli-
nearities and domain adaptation in our
predictor.
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GDSC and TCGA (Fig. 3A) and between GDSC and HMF
(Fig. 3B) show a concentration of offset and linearities in the top
consensus features and overall the same proportion of nonlinear-
ities as in the GDSC-to-Patient Derived Xenografts Encyclopedia
(PDXE) analysis (Fig. 3C).

In order to visualize the structure retained in the consensus
space, we embedded our consensus scores into a two-dimensional
space using UMAP (45). We observed that primary tumors cluster
together based on their tissue type (Fig. 3D). Most cell lines clus-
ter with the tumors from a similar tissue of origin. However, some
groups of cell lines cluster together but away from the tumors
with the same tissue of origin as observed in previous studies
(37, 38). For example, there is a cell line cluster consisting of
peripheral nervous system and bone cell lines that cocluster with
central nervous system tumors. To quantify the degree of coclus-
tering of cell lines and tumors, we compared distances between
tumors and cell lines from similar and nonsimilar tissues and
observed, as expected, a higher similarity between tumors and cell
lines from the same tissue (SI Appendix, Fig. 11D). Metastatic
lesions show a weaker clustering based on the primary tumor’s tis-
sue of origin (SI Appendix, Fig. 11 A and E). This is not unex-
pected, as the expression profiles are derived from biopsy sites
distant from the primary tissue. Of particular interest, we observe
the existence of a hematopoietic cell line cluster that coclusters
with metastatic samples from various biopsy sites. Most of these
tumor samples (7 out of 12 samples) are lymph node metastases
and most likely display a hematopoietic expression profile due to
blood infiltration in the samples (SI Appendix, Fig. 11C).

Consensus Features Increase Transfer of Response Predictors from
Cell Lines to Primary Tumors and Metastatic Lesions. To further
validate our approach, we transferred response predictors from

cell lines to the TCGA and HMF collections of human tumors.
First, we projected the GDSC and TCGA expression data onto
the GDSC–TCGA consensus features. Then we trained, for
each drug, a regression model using solely the cell line response
data (measured as AUC). These drug-specific regression models
were then used to predict response on the projected TCGA
data for patients that received the target drug as monotherapy
or in combination with other standard-of-care therapies
(Dataset S2 and Methods). Finally, we compared the predicted
patient responses to the known categorical clinical responses
using a one-sided Mann–Whitney U test and computed the cor-
responding effect size. We trained models for 17 different drugs
(Table 1). We compared the performance of TRANSACT to the
performance obtained by four competing approaches (ElasticNet,
DL, ComBatþDL, and PRECISE) (Table 1, Fig. 4A, andMethods).
For the DL approaches (DL and ComBatþDL), we selected
the architecture and hyper parameters for each drug by fivefold
cross-validation on GDSC (Methods). We subsequently trained
50 models with different and independent initializations (Methods)
and reported the median performance obtained on TCGA.

ElasticNet and PRECISE obtain significant associations (bold
entries in Tables 1 and 2) for three and six drugs, respectively, but
neither approach ever outperforms (i.e., achieves a larger AUC)
all other approaches. DL and ComBatþDL achieve significant
associations for eight and five drugs, respectively—however, both
approaches outperform all others (red, bold entries in Tables 1
and 2) for only three and one drug, respectively. In contrast,
TRANSACTachieves significant associations for seven drugs and
obtains a larger AUC than all other approaches for five drugs.

For both deep learning approaches, we observe an important
dependency on the network initialization (Fig. 4A). More
importantly, we observe no correlation between the training

Fig. 3. Pan-cancer consensus features
between cell lines and tumors conserve tis-
sue type information. We used cell lines
(GDSC) as source data and compute two
sets of consensus features with two differ-
ent target datasets: primary tumors (TCGA,
A and D) and metastatic lesions (HMF, B
and E). (A) Proportion of linear and nonlin-
ear contributions to each of the 30 GDSC-
to-TCGA consensus features. (B) Proportion
of linear and nonlinear contributions to
each of the 20 GDSC-to-HMF consensus
features. (C) Comparison of global contri-
butions in the three analyses, that is, GDSC-
to-PDXE, GDSC-to-TCGA, and GDSC-to-HMF.
(D) UMAP plot of primary tumors (TCGA, 21
tissues) and cell lines (GDSC, 22 tissues) pro-
jected on the consensus features using the
same parameters as selected in Fig. 2. The
full legend for D and E is depicted in SI
Appendix, Fig. 11.
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error achieved on the source domain (cell lines) and the predic-
tion accuracy on the target domain (human tumors), making it
impossible to select a proper initialization solely based on the
source domain performance (SI Appendix, Figs. 12A and 13A).
The results obtained with TRANSACT, on the contrary, do not
depend on a random initialization.

For the HMF data, we repeated the steps above while
employing the GDSC–HMF consensus features as well as the
HMF and GDSC expression and response data. We trained
models for six drugs (Table 2 and Fig. 4B). Across all
approaches, we observe a significant association between the
predicted AUC and clinical responses for four of the six drugs
(Table 2 and SI Appendix, Fig. 14). PRECISE reaches signifi-
cance for two drugs, whereas ElasticNet, DL, and CombatþDL
reach significance for a single drug. TRANSACT outperforms
PRECISE on three drugs, and ComBatþDL, DL, and ElasticNet

on four drugs. TRANSACT achieves a borderline nonsignificant
association for Paclitaxel but achieves an effect size of 0.7. In
contrast, all competing approaches fail to achieve any associa-
tion with effect sizes around 0.5, corresponding to random
chance. Also, for the HMF cohort, deep learning approaches
show a strong dependency on parameter initialization (Fig. 4B)
and a lack of correlation between source and target domain per-
formance (SI Appendix, Figs. 12B and 13B).

In summary, across the 23 drug prediction challenges on the
TCGA and HMF cohorts, 13 lead to a significant prediction for
at least one method. Among these, TRANSACT performs best,
reaching significance in 11 challenges, followed by DL and
ComBatþDL reaching significance in nine and six challenges,
respectively. TRANSACT yields larger AUCs than DL, Com-
BatþDL, and PRECISE for nine, nine, and eight drugs respec-
tively (Fig. 4C). It should be noted that only three of these

Table 1. Results of TRANSACT compared to four competing approaches—ElasticNet, DL, ComBat ± DL, and PRECISE—for 17 drugs
on TCGA

GDSC TCGA p-val [effect size] on TCGA

Drug Samples Drug

Samples
Elastic
Net DL DL + ComBat PRECISE TRANSACTResp. NR.

Afatinib 800 Trastuzumab 16 0.089 0.034 0.034 0.026 0.016

14 2 [0.82] [0.93] [0.93] [0.96] [1.00]
Bleomycin 856 Bleomycin 53 0.15 0.17 0.47 0.11 0.091

47 6 [0.63] [0.62] [0.51] [0.66] [0.67]
Cetuximab 868 Cetuximab 19 0.12 0.52 0.45 0.45 0.077

9 10 [0.67] [0.50] [0.52] [0.52] [0.70]
Cisplatin 764 Cisplatin 308 1.1E-6 2.0E-4 1.1E-2 2.2E-5 3.9E-7

242 66 [0.69] [0.64] [0.59] [0.66] [0.70]
Cisplatin 764 Carboplatin 166 0.042 0.15 0.69 0.024 0.0035

111 55 [0.58] [0.55] [0.48] [0.59] [0.63]
Cyclophosphamide 747 Cyclophosphamide 102 0.57 0.62 0.85 0.11 0.64

96 6 [0.48] [0.46] [0.38] [0.65] [0.46]
Docetaxel 665 Docetaxel 102 0.62 0.30 0.73 0.78 0.11

67 35 [0.48] [0.53] [0.46] [0.46] [0.58]
Doxorubicin 871 Doxorubicin 101 0.81 0.0048 0.52 0.99 0.054

68 33 [0.45] [0.66] [0.50] [0.32] [0.60]
Etoposide 880 Etoposide 84 0.21 0.0030 0.005 0.0071 0.027

73 11 [0.58] [0.76] [0.62] [0.73] [0.68]
5-Fluorouracil 801 Fluorouracil 186 0.22 0.70 0.79 0.82 0.35

129 57 [0.54] [0.48] [0.46] [0.46] [0.52]
Gemcitabine 752 Gemcitabine 156 0.25 0.015 0.0052 0.029 0.0057

75 81 [0.53] [0.60] [0.62] [0.59] [0.62]
Irinotecan 796 Irinotecan 25 0.81 0.39 0.757 0.54 0.46

7 18 [0.39] [0.54] [0.41] [0.49] [0.52]
Oxaliplatin 724 Oxaliplatin 66 0.38 0.017 0.0059 0.028 0.035

43 23 [0.52] [0.66] [0.69] [0.64] [0.64]
Paclitaxel 753 Paclitaxel 160 0.032 0.026 0.28 0.10 0.0042

111 49 [0.59] [0.60] [0.53] [0.56] [0.63]
Pemetrexed 898 Pemetrexed 38 0.16 0.38 0.56 0.16 0.367

18 20 [0.60] [0.53] [0.49] [0.59] [0.53]
Temozolomide 746 Temozolomide 96 0.56 0.34 0.51 0.59 0.19

11 85 [0.49] [0.54] [0.50] [0.48] [0.58]
Vinorelbine 746 Vinorelbine 30 0.31 0.048 0.053 0.19 0.35

23 7 [0.57] [0.71] [0.71] [0.61] [0.55]

For each drug, we train five predictors and compare in each scenario the predicted AUC to the known clinical response using one-sided Mann–Whitney
U test. Samples were divided in two categories: Responders and Nonresponders (NR) (Methods). For each predictor, we report the P value and the effect
size (area under the ROC, effect size associated with the Mann–Whitney U test) in brackets. Italic cells correspond to significant associations (P < 0.05). Bold
cells correspond to significant associations with the largest effect size across the five methods.
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comparisons are significant based on the bootstrap CIs of the
AUC (Dataset S2). Nevertheless, when comparing methods in
a paired fashion across the 13 drugs in which at least one
method reaches significance, we observe that AUCs obtained
by TRANSACTare significantly larger than the AUCs obtained
by ComBatþDL (P = 0.021, one-sided paired Wilcoxon rank-
sum test) (Fig. 4D). When comparing TRANSACT to DL or
PRECISE, we observe larger obtained median AUCs, but
these differences are not significant (P = 0.07 and P = 0.21,
respectively).

Interpretability of Consensus Features Confirms Known Mechanisms
for Targeted Therapies and Unveils Potential Biomarkers of
Sensitivity for Cytotoxic Drugs. Finally, we made use of the inter-
pretability of our approach to mechanistically validate our pre-
dictors (Methods). We first validated targeted therapies with
documented modes of action. We started with the TRANSACT
predictor of response for Afatinib, a small molecule inhibitor of
the EGFR family, which includes HER2 (Fig. 5A). We per-
formed a gene set enrichment analysis of the linear terms that
constitute 80% of the predictor (Dataset S3). Most enriched

Fig. 4. Consensus features improve response
prediction in patients. (A) We used consensus
features computed between the GDSC and
each tumor dataset to train a predictor for 17
drugs on TCGA and six drugs on HMF using
only GDSC drug response. We then predicted
the continuous response in patients for each
drug and compared this predicted value to
the observed clinical response using a one-
sided Mann–Whitney U test (Tables 1 and 2).
We performed the same prediction tasks
using three state-of-the-art approaches (Com-
BatþDL, DL, and PRECISE), and we summa-
rized the results in a boxplot for TCGA (A)
and HMF (B), restricting to the drugs in which
at least one method reaches a significant pre-
diction. For ComBatþDL and DL, we display
the results obtained using 50 different ran-
dom initializations. (C) Table of performance
comparing each method; to read as “method
on y-axis obtained higher AUC than method
on x-axis,” for example, “PRECISE obtained
higher AUC than ComBat+DL for nine drugs.”
(D) Comparison of ROC AUCs obtained with
each of the four methods for the 13 drugs
with significant prediction. P values com-
puted using a one-sided Wilcoxon paired
rank-sum test.

Table 2. Results of TRANSACT compared to four competing approaches—ElasticNet, DL, ComBat ± DL, and PRECISE—for six drugs
on HMF

GDSC HMF p-val [effect size] on HMF

Drug Samples Drug

Samples
Elastic
Net DL DL + ComBat PRECISE TRANSACTPR SD PD

Afatinib 800 Trastuzumab 25 0.18 0.069 0.13 0.021 0.032

9 11 3 [0.70] [0.81] [0.74] [0.93] [0.89]
Irinotecan 796 Irinotecan 67 0.060 0.060 0.082 0.10 0.020

5 34 25 [0.73] [0.75] [0.71] [0.69] [0.80]
Cisplatin 764 Carboplatin 64 0.23 0.051 0.054 0.59 0.0045

22 27 12 [0.58] [0.68] [0.67] [0.67] [0.78]
5-Fluorouracil 801 5-Fluorouracil 61 0.065 0.14 0.14 0.21 0.24

10 33 18 [0.68] [0.63] [0.63] [0.59] [0.58]
Paclitaxel 753 Paclitaxel 45 0.56 0.30 0.34 0.39 0.061

14 19 9 [0.48] [0.43] [0.43] [0.53] [0.70]
Gemcitabine 752 Gemcitabine 50 0.039 0.019 0.039 0.0089 0.0042

22 17 9 [0.71] [0.74] [0.71] [0.78] [0.81]

For each drug, we train five predictors and compare in each scenario the predicted AUC to the known clinical response using one-sided Mann–Whitney
U test between PR and PD (Methods). For each predictor, we report the P value and the effect size (area under the ROC, effect size associated with the
Mann–Whitney U test) in brackets. Italic cells correspond to significant associations (P < 0.05). Bold cells correspond to significant associations with the
largest effect size across the five methods.
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gene sets are related to breast cancer subtypes as defined by
Charafe and colleagues (46) in which, contrary to the definition
based on the intrinsic breast cancer subtypes, the Luminal sub-
type contains both ER+ and HER2+ tumors. The top ranked
gene set among the genes associated with sensitivity (genes
with a negative coefficient in the predictor) are genes associ-
ated with the “luminal” subtypes (false discovery rate [FDR] <
0.001). Conversely, genes associated with resistance (genes with

a positive coefficient in the predictor) show enrichment for the
“mesenchymal” molecular signatures, shared by basal and mes-
enchymal subtypes. This corresponds with HER2-negative sam-
ples, which is in line with our expectation, as an absence of the
drug target would indicate lack of response. Similarly, in the
TRANSACT response predictor for Gefitinib (EGFR inhibi-
tor), the genes constituting the linear portion and associated
with sensitivity (negative predictor coefficients) show an

Fig. 5. Interpretability of TRANSACT con-
sensus features recapitulates modes of
action for Afatinib and Gefitinib and high-
lights mechanisms of sensitivity and resis-
tance to Gemcitabine and Paclitaxel. (A)
For the Afatinib (HER-2 protein kinase
inhibitor) response model trained on GDSC
samples projected on GDSC-to-TCGA con-
sensus features, we show the contribution
of each gene to the predictor. (Left) Posi-
tive (negative) weights in the predictor
indicate that high (low) expression of the
genes leads to resistance (sensitivity) repre-
sented by larger (smaller) AUCs. We per-
formed a PreRanked gene set enrichment
analysis on these weights and highlight
genes associated to two significantly
enriched gene sets: “Charafe [… ] Luminal
versus Mesenchymal UP” (Center Left) and
“Charafe [… ] Luminal versus Mesenchymal
DOWN” (Center Right). The two triangles
on the right illustrate these two gene set
distributions. (B) Interpretation of the lin-
ear part of the Gefitinib (EGFR inhibitor)
model. We display gene weights ordered
by contribution (Left) and the ranks of
genes known to be down-regulated in
Gefitinib-resistant tumors (Right). (C) Inter-
pretation of Gemcitabine predictor. (Left)
We display the positions of genes associ-
ated to two significantly enriched gene
sets: “CDC42 pathway,” associated to posi-
tive weights (resistance), and “TNF-α signal-
ing,” associated to negative weights (sensi-
tivity). (Right) Interaction terms make 15%
of Gemcitabine predictor. We show the dis-
tribution of their weights annotated with
the 10 largest weights (resistance) and 10
smallest weights (sensitivity). (D) Interpreta-
tion of Paclitaxel predictor. (Left) We dis-
play the positions of genes associated to
two significantly enriched gene sets, both
to resistance: “Basaki YBX1 target UP” and
“constitutive signaling by PI3K-aberrant
signaling.” (Right) Interaction terms for
Paclitaxel that make 12% of the predictor
alongside the top 10 resistant and top 10
sensitive interactions.
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enrichment for genes down-regulated in Gefitinib-resistant
tumors (Fig. 5B and Dataset S4). Interestingly, two gene sets
related to breast cancer subtypes also show a significant enrich-
ment in the negative coefficients of the predictor, linked to sen-
sitivity: “Luminal versus Basal Down” (normalized enrichment
score [NES] = �1.94, FDR < 0.001) and “Luminal versus Mes-
enchymal Up” (NES = �1.85, FDR = 0.004). The first gene set
contains EGFR, the target of Gefitinib, implying that high lev-
els of EGFR are, as one would expect, associated with sensitiv-
ity. The association of the second set with Gefitinib response is
supported by the fact that mesenchymal tumors have been
shown to be resistant to EGFR inhibition (47). Further support
is provided by the presence of two genes in the leading edge of
the enrichment: ERBB2 and PTPN6 (SHP-1) (Dataset S4).
ERBB2 is a member of the EGFR family, which heterodimerizes
with EGFR, resulting in the activation of the EGFR pathway.
Such cells tend to be sensitive to the inhibition of the pathway,
that is, to Gefitinib treatment. PTPN6, on the other hand, inhib-
its the PI3K pathway (48, 49), the activation of which is a known
resistance mechanism to Gefitinib (50). Therefore, high levels of
PTPN6 prevents the pathway from being activated to circumvent
Gefitinib treatment effects.

Cytotoxic drugs such as Gemcitabine or Paclitaxel have complex
modes of actions involving different pathways, the crosstalk
between which remains challenging to understand. Since the pre-
dictions of these two drugs showed a significant association in both
PDXs and patients, we set out to interpret the mechanisms of sen-
sitivity or resistance inferred by our predictor. In Gemcitabine
(Dataset S5), we observe that overexpression of the CDC42 path-
way is a significant marker of resistance (FDR = 0.012, Fig. 5C,
Left) together with pathways linked to microtubule formation and
cell migration (SI Appendix, Fig. 15), both known to be promoted
by CDC42 (51). Together, these enriched pathways highlight
CDC42 overexpression as a potential mechanism of Gemcitabine
resistance, which suggests the use of CDC42 inhibitors (52, 53) for
Gemcitabine-resistant tumors. Another interesting finding is the
significant enrichment of TNF-α signaling in the genes associated
with sensitivity (FDR = 0.046) (Fig. 5C, Left). A clinical trial has
shown that coadministration of TNF with gemcitabine improves
patient survival and further inhibits tumor growth (54), lending
additional credence to this finding. Last, we observe a concentra-
tion of sensitive interactions involving BLK, a proapoptotic Src-
proto-oncogene involved in B cell signaling and differentiation
(Fig. 5C, Right). Since hematopoietic cell lines respond better
to Gemcitabine, these interactions can either act as a tissue-type
marker or could potentially represent a sensitive pathway.

Finally, we looked for enriched pathways in the Paclitaxel
predictor (Fig. 5D, Left and Dataset S6) and observed three
potential mechanisms of resistance. We first observe that in the
linear terms, the genes associated with resistance are signifi-
cantly enriched in genes linked to the silencing of YBX1 (55)
(FDR = 0.106), a gene associated with proliferation in certain
tumor types (56). In ovarian cancer, YBX1 has been shown to reg-
ulate ABCB1 expression levels, a gene related to Paclitaxel resis-
tance (57–61). Our pan-cancer analysis therefore further supports
the role of drug transporters in Paclitaxel resistance. Second, we
observe a significant enrichment in genes associated with resis-
tance for PI3K activation (FDR = 0.18), which is corroborated by
the observed activation of the PI3K/AKT/mTOR signaling path-
way in Paclitaxel-resistant cancer cells (62, 63). Moreover, a recent
investigation suggests that PI3K catalytic subunits can regulate
ABCB1 expression (64). Finally, when it comes to the nonlinear
part, we observe a concentration of fibroblast growth factor inter-
actions in the nonlinearities associated with resistance, in particu-
lar FGF3, FGF20, and FGF8 and FGF4 (Fig. 5D, Right and
Dataset S6). This behavior, although suggested by previous studies
(65, 66), is all the more interesting, as cell lines do not contain any
microenvironment that would elicit such resistance.

Discussion
We introduced an approach to integrate preclinical and clinical
data in a fully unsupervised way. Our approach geometrically
aligns sample-to-sample similarity matrices and extracts direc-
tions of important variations for both datasets without requiring
any sample-level pairing. By performing a geometrical align-
ment instead of a direct distribution comparison, our approach
limits the effect of a potential sample selection bias. This geo-
metrical alignment is implicitly performed in a space induced by
our similarity function, which enables the integration of various
assumptions regarding nonlinearities in the system. Although
we restricted ourselves to a single Gaussian similarity function
for all drugs, designing similarity functions that incorporate a
wide range of prior knowledge, specifically tailored for each
drug, is a potentially promising avenue. Learning the similarity
matrix, for example, using multiple kernel learning (67) or deep
learning methods such as variational autoencoders (68), may
also help increase performance.

TRANSACT compares directions computed using kernel
PCA, but our approach can be extended to other basis expan-
sion methods by modulating the way the coefficients αs and αt

are computed. More generally, our method is versatile, general-
izable, and can be applied beyond the scope of our study, for
example, to integrate single-cell sequencing data.

We showed that the consensus features can be used to build
translatable predictors of drug response. Although we do not
require a strong covariate shift assumption as in a previous
study (69), we do assume the functions modeling the response
from these consensus features follow the same monotonicity in
preclinical models and human tumors. This assumption, albeit
reasonable, may be questioned.

In this study, we limited ourselves to gene expression. Making
use of other genomics levels—for example, mutations, copy num-
ber, methylation, and chromatin accessibility—may help refine
the prediction by providing additional signal. The integration of
our approach with multiomics integration strategies (70, 71) may
offer a solution to the translation of multiomics signatures.

Finally, we evaluated the predictors on a variety of drug pre-
diction tasks in human data that are quantitatively far greater
and mechanistically more diverse than prior work. We were
able to predict response in patients that received a particular
treatment, either as monotherapy or in combination with other
therapies, even though the cell line predictors were trained on
monotherapies only. We convincingly demonstrate that response
predictions are now substantially better than random guessing
for a number of therapies of high clinical importance, such as
platinum-based chemotherapies, gemcitabine and paclitaxel.
In addition, we include results of a new dataset from HMF, which
provides independent validation of performance on TCGA data.
Intriguingly, none of the methods were able to predict the human
responses to cyclophosphamide. However, no effect in vitro has
been observed for this prodrug, which might be considered as a
negative control for the approaches.

Although our results are encouraging, we recognize that the
drug response prediction models we present here are still far
from clinical applicability. For example, one would never with-
hold a standard-of-care therapy based on the accuracy with
which the presented predictors can identify nonresponsive
patients. However, a more likely scenario in which such predic-
tors could become useful sooner is in providing guidance in
drug repurposing for patients that have become refractory to
all standard-of-care treatments. To reach accuracies that are
acceptable for clinical application, we anticipate that large-scale
model system drug (combination) screens could provide the
required training samples sizes.

The recent advent of immunotherapies calls for methods with
the ability to predict the clinical response from model systems.
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This requires model systems capable of mimicking the action of
the immune system and screening technologies able to measure
the response for large panels. We believe that our approach can
be extended to such problems once data are made available.

Methods
Public Data Download and Preprocessing.
GDSC dataset, download, and processing. We made use of the GDSC1000
cell line panel (14), which contains complete molecular profiles for 1,049 cell
lines (SI Appendix, Fig. 3). Gene expression is provided in the form of both
read counts and fragments per kilobase per million (FPKM). For both settings,
we normalized the dataset for library size and potential sampling artifacts
using trimmed mean of M values (TMM) (72) and log transformed the
adjusted read counts (73, 74). Finally, we performed a gene-level mean center-
ing and standardization. When comparing GDSC to PDXE, we employed the
FPKM data; in the two other analyses (GDSC to TCGA and GDSC to HMF), we
made use of the read count data. In this way, FPKM and read count were
never used at the same time.
Novartis PDXE dataset, download, and processing. We made use of the
NIBR PDXE dataset for patient-derived xenografts (15), which contains the
gene expression profiles of 399 PDXs (SI Appendix, Fig. 4). Gene expression is
provided in the form of FPKM. We normalized the dataset using TMM (72)
and log transformed the adjusted read counts (73, 74). Finally, we performed
a gene-level mean centering and standardization.
TCGA dataset, download, and processing.Wemade use of the TCGA dataset
for analyzing human biopsies (75), which comprises 10,347 human tumors (SI
Appendix, Fig. 5). Gene expression is provided in the forms of both read
counts and FPKM, and we used the same preprocessing pipeline as for GDSC.
Response data have been obtained from Ding et al. (76). Following Ding et al.,
for each drug, we consider the response to patients who were administered a
particular drug either as monotherapy or in combinationwith other drugs.
HMF dataset download and processing. We validated our approach on a
cohort of 1,049 patients provided by the HMF (SI Appendix, Fig. 6A) (77, 78).
Gene expression was measured for each metastatic sample prior to the indi-
cated drug regimen. We used MultiQC for quality control (79), salmon v1.0.0
for alignment to reference transcriptome (80), and finally edgeR for gene-
level quantification (81). A comparison with results obtained using STAR (82)
and featureCounts (83) shows high degree of concordance (SI Appendix, Fig.
6D), and we used this comparison to refine our filtering. Read counts were
then processed using the same pipeline as in GDSC and TCGA.

The drug response was measured in 802 unique metastatic samples using
the response evaluation criteria in solid tumors (RECIST) criteria. The response
was measured differently for each patient (SI Appendix, Fig. 6B), with most
patients having one single measure of response around 10 to 15 wk after
treatment started (SI Appendix, Fig. 6C). Since we are interested in the
response of the drug given the molecular characterization measured, we con-
sidered for each patient the first response after treatment. Since most drugs
are administered in combination, we considered for each drug all the patients
that received it, whether in combination with other drugs or as monotherapy.
For instance, in the case of Gemcitabine, we predicted the drug response for
all patients that received Gemcitabine as part of their treatment strategies.

Measure of Drug Response. In our different analysis, we rely on drug response
measurements, either to train a predictor (GDSC) or to validate it (PDXE,
TCGA, and HMF). For cell lines (GDSC), drug response is measured as AUC. For
PDX, drug response is measured as best average response, which corresponds
to the relative variation of tumor volume induced by a certain treatment. For
both AUC and best average response, large values are associated with resis-
tance. For TCGA and HMF, clinical responses have been measured using the
RECIST criteria (84). Based on various metrics, patients get assigned to one of
the following four groups: Complete Response (CR), Partial Response (PR), Sta-
ble Disease (SD), and Progressive Disease (PD). Following the division used in
previous works (21, 23), we divide TCGA patients into two categories: Res-
ponders (CR and PR) and Nonresponders (SD and PD). For HMF, we discrimi-
nate between each possible couple: PR versus PD, PR versus SD, and SD versus
PD. Since only a couple of patients showed a complete response, we did not
consider these patients.

Mathematical Notation. We denote by p the number of genes. We consider
one source dataset Xs ¼ xs1,…, xsns

n o
⊂Rp and one target dataset Xt ¼

xt1,…, xtnt

n o
⊂Rp with corresponding source and target data matrices

Xs ∈ Rns×p and Xt ∈ Rnt×p.
We consider a similarity function K—also called kernel function—that

assigns to two samples a scalar value that is large for similar samples and small

for dissimilar samples. In this work, we assume the kernel to be positive defi-
nite (SI Appendix, Reproducing Hilbert Space), and specifically use the follow-
ing two kernels:

� Linear kernel: Klinear x,yð Þ ¼ xTy.
� Gaussian kernel or radial basis function: Krbf

γ x,yð Þ ¼ exp �γx� y2
� �

, with
γ > 0.

We denote by Ks the matrix of similarity between source samples, Kt

between target samples, and Kst the matrix of similarity between source and
target (SI Appendix, Centered Kernel Matrices). These similarity matrices are
then mean centered (SI Appendix, Centered Kernel Matrices), yielding matri-
ces Kes , Ket and Kest.
Kernel PCA by Eigendecomposition of Centered Kernel Matrix for Capturing
Directions of Principal Variance. Using the so-called kernel trick (83) (SI
Appendix, Reproducing Hilbert Space), the similarity matrices from K_s, K_t
and K_st can be seen as sample covariance matrices and therefore decom-
posed to compute principal components inside the embedded space, a proce-
dure known as kernel PCA (86). We perform kernel PCA on source and target
data independently to compute ds and dt principal components, respectively.
Kernel PCA on the source dataset consists of an eigendecomposition of the
matrix Kes , yielding αs ∈ Rds×ns , while kernel PCA on the target dataset
decomposes Kt

e, yielding αt ∈ Rdt×nt (SI Appendix, Nonlinear Source and
Target Principal Components).

Comparing and Aligning Preclinical and Tumor Nonlinear Principal
Components. Similarly to the “cosine similarity matrix” in other related works
(25, 29), we define the nonlinear cosine similarity matrixMK as the matrix that
geometrically compares the source NLPCs to the target NLPCs (SI Appendix,
Cosine Similarity Matrix). This matrix can be computed as follows (SI
Appendix, Computation of Cosine SimilarityMatrix):

MK ¼ αs ~Kstαt
T ¼ αsCnsKstCntαt

T
: [1]

In a first step of our domain adaptation approach, we use the matrix MK to
align NLPCs, yielding nonlinear PVs s1, :, sd for the source and t1, :, td for the
target domains, with d ¼min ds, dtð Þ (SI Appendix, Kernel Principal Vectors).
These PVs are pairs of vectors: one linear combination of source NLPCs and
one linear combination of target NLPCs ordered by decreasing similarity with
the first pair being the most similar. The computation of these PVs relies on
the singular value decomposition (87) of MK , MK ¼ βsΣβtT , that helps us
define the source and target sample importance loadings ρs and ρt as follows
(SI Appendix, Principal Vector Sample Importance Loadings):

ρs ¼ βsTαs and ρt ¼ βt
T
αt : [2]

Interpolation between Kernel PVs for Balancing Effect of Source and Target.
Each pair of PVs contains two vectors that are geometrically similar. The pro-
jection on themwill create two highly correlated covariates that would not be
optimal for subsequent statistical treatment. In order to compute one vector
out of each pair, we interpolate between the source and the target PV within
each pair (SI Appendix, Geodesic Flow between Principal Vectors). For the kth

PV, the interpolation is modulated by a coefficient τk that ranges between 0,
when the interpolation returns the source PV, and 1, when the interpolation
returns the target PV. To compute this interpolation, we need two functions,
Γ τð Þ ¼ Γ1 τ1ð Þ, :,Γd τdð Þ½ �T and ξ τð Þ ¼ ξ1 τ1ð Þ, :,ξd τdð Þ½ �T defined as (ref. of SI
Appendix,Angular Interpolation Function).

For a set of d interpolation coefficients ½τ1, :, τd�, we compute the projec-
tion of source and target datasets F τð Þ ∈ R nsþntð Þ×d as follows (SI Appendix,
Theorem Supp. 6.6):

F τð Þ ¼ Ks Kst

Kts Kt

� �
Cns 0
0 Cnt

� �
ρsT 0
0 ρtT

� �
Γ τð Þ
ξ τð Þ

� �
: [3]

Such an interpolation between PVs balances the effect of source and target
datasets. We prove that, in the case of a linear kernel, our interpolation
scheme is equivalent to the one from previous approaches (27, 88) (SI
Appendix, Equivalencewith Geodesic Flow Kernel).

Within each pair of PVs, we select one intermediate representation in
which the source and target projections match the most. For the kth PV pair,
we compare the source and target projected data using a
Kolmogorov–Smirnov statistic and select the interpolation coefficient τ�k in
which the statistic is minimal. We obtain a set of optimal interpolation coeffi-
cients τ� ∈ 0,1½ �d when, for each PV, source and target influence are balanced.
We call the corresponding vector consensus features. These consensus fea-
tures show theminimal difference between source and target domain, a theo-
retical necessary condition for domain adaptation (89).
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Prediction Using ElasticNet. In order to predict drug response, we use Elastic-
Net regression (90). ElasticNet is a linear model that imposes two penalties on
the coefficients to predict an ℓ1 penalty that leads to a sparse model and an
ℓ2 penalty that jointly shrinks correlated features.

We chose ElasticNet first because it has repeatedly been shown in the drug
response prediction literature to give equivalent, if not better, predictive per-
formance compared to complex models (16, 18, 41). Using a linear classifier lim-
its the complexity and therefore makes the transfer more robust in practice.

Taylor Expansion of the Similarity Function for Interpretability of the Model.
In the case of radial basis function, we perform a PCA in an infinite-
dimensional feature space. Although this space cannot be analytically com-
puted, it can be approximated using a Taylor expansion (91) (SI Appendix,
Gene Set Enrichment Analysis of Consensus Features). For the q-th consensus
feature, we differentiate three kinds of contributions (SI Appendix, Offset,
Linear and Interaction Terms for Consensus Features):

- OffsetOq: a Gaussian term thatmodels the squared depth.
- Linear contributions Lq,j

� �
1≤j≤p : a linear term resembling the expression of

one gene.
- Interaction terms Iq,j,k

� �
1≤j,k≤p: an interaction term that expresses the prod-

uct of two genes.

These contributions can be computed from sample importance loadings of
consensus features (SI Appendix, Prop. Supp. 7.7). We consider the contribu-
tions’ sum of squares as a geometrical proportion since these sum up to one
(SI Appendix, Def. Supp. 7.8).

In order to look for enrichment in a particular consensus feature, we look
for the enrichment of particular gene sets (92). Specifically, for the linear con-
tribution, we compute the loading of all linear terms (SI Appendix, Equation
Supp. 48) corresponding each to one gene. We then use these gene scores to
perform a preranked gene set enrichment analysis with 1,000 permutations
and use a threshold of 20% for FDR. Since these loadings correspond to an
Euclidean geometric proportion, we used a squared statistic to compare them.

Comparison to Competing Approaches. We compare TRANSACT to four differ-
ent approaches. The two first approaches consist in applying a regression
model trained on a source dataset to a target dataset without any correction;
we use one linear ElasticNet model (referred to as ElasticNet) and a nonlinear
neural network model (referred to as DL). In both cases, we perform a grid
search fivefold cross-validation on cell lines to select the model with the best

performance: on ElasticNet, we vary the ℓ1 ratio and the total regularization;
on DL, following the protocol from Sakellaropoulos et al. (21), we use a hyper-
bolic tangent activation function while varying the global network structure,
the ℓ2 penalty, and the input and output dropout levels (Dataset S7).

The other two approaches first correct the signal and then train a regression
model. The third approach (referred to as ComBatþDL) reproduces the
approach from Sakellaropoulos et al. (21) byfirst performing a ComBat technical
batch effect correction between source and target and then applying a neural
network on the corrected signal, similar to DL (Dataset S8). The last competing
approach, referred to as PRECISE, consists of using a linear similarity function
followed by an ElasticNet model, which is equivalent to PRECISE (SI Appendix).

For the two deep learning approaches, we first performed cross-validation
on the source dataset (with or without correction) to select the hyper parame-
ters and the network structures with the largest predictive performance. We
then reinitialize the network and train it on the complete GDSC dataset.

In all comparisons, receiver operating characteristic (ROC) curves and areas
were computed using the pROC package (93). The 95% CIs were computed
using the “bootstrap” submethodwith 1,000 samplings with stratification.

Data Availability. TRANSACT is available as a Python 3.6 module (https://github.
com/NKI-CCB/TRANSACT). All our experiments are reproducible and use state-
of-the-art libraries (94–99) (https://github.com/NKI-CCB/TRANSACT_manuscript).
The dataset(s) supporting the conclusions of this article are available in the
“download_data” repository of the aforementioned GitHub page, except for
the HMF data, which is freely available for academic research through an
access-controlled mechanism (see https://www.hartwigmedicalfoundation.nl/
applying-for-data/ for details and request procedures). The gene and interac-
tion weights obtained for the four studied predictors (Fig. 5) are available in SI
Appendix and Datasets S3–S6.
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